105 lines
2.6 KiB
Python
Executable File
105 lines
2.6 KiB
Python
Executable File
#!/usr/bin/python3
|
|
|
|
import os
|
|
import json
|
|
import sqlite3
|
|
import requests
|
|
import matplotlib
|
|
import matplotlib.pyplot as plt
|
|
import matplotlib.animation as animation
|
|
import matplotlib.style as style
|
|
|
|
def Checkthedatabase():
|
|
## Some sanity for the database
|
|
# check if btc_timeseries.db database file exists
|
|
if not os.path.exists("btc_timeseries.db"):
|
|
db = sqlite3.connect("btc_timeseries.db")
|
|
db.execute("CREATE TABLE timeseries (timestamp INTEGER, value REAL)")
|
|
db.commit()
|
|
db.close()
|
|
|
|
db = sqlite3.connect("btc_timeseries.db")
|
|
|
|
# Check if the table exists
|
|
table_exists = False
|
|
cursor = db.execute("PRAGMA table_info(timeseries)")
|
|
for row in cursor:
|
|
table_exists = True
|
|
|
|
# Create the table if it doesn't exist
|
|
if not table_exists:
|
|
db.execute("CREATE TABLE timeseries (timestamp INTEGER, value REAL)")
|
|
db.commit()
|
|
|
|
def Getdata():
|
|
#fetch the price data
|
|
payload = {'symbol': 'BTCUSDT'}
|
|
response = requests.get('https://api.binance.com/api/v3/avgPrice', params=payload)
|
|
|
|
#get the usd_value
|
|
json_data = response.json()
|
|
usd_value = json_data['price']
|
|
|
|
### Insert the USD value into the database
|
|
db.execute("INSERT INTO timeseries (timestamp, value) VALUES (datetime('now'), ?)", (usd_value,))
|
|
|
|
## Save the changes to the database
|
|
db.commit()
|
|
#print(db.execute("SELECT * FROM timeseries"))
|
|
|
|
#update the graph
|
|
def Updategraph(num):
|
|
cursor.execute("SELECT timestamp, value FROM timeseries WHERE timestamp > datetime('now', '-10 second')")
|
|
stuff = cursor.fetchall()
|
|
|
|
timestamps = [row[0] for row in stuff]
|
|
values = [row[1] for row in stuff]
|
|
|
|
line.set_data(timestamps, values)
|
|
ax.relim()
|
|
ax.autoscale_view()
|
|
Getdata()
|
|
|
|
Checkthedatabase()
|
|
|
|
db = sqlite3.connect("btc_timeseries.db")
|
|
Getdata()
|
|
|
|
##some styling for the plot
|
|
style.use('dark_background')
|
|
|
|
colors = {
|
|
'figure.facecolor': '#222222',
|
|
'axes.facecolor': '#222222',
|
|
'axes.edgecolor': '#FFFFFF',
|
|
'axes.labelcolor': '#FFFFFF',
|
|
'grid.color': '#444444',
|
|
'grid.linestyle': 'dotted',
|
|
'lines.color': '#FFFFFF'
|
|
}
|
|
matplotlib.rcParams.update(colors)
|
|
|
|
# Create a figure and axes for the plot
|
|
fig, ax = plt.subplots()
|
|
|
|
#query database for the data
|
|
cursor = db.execute("SELECT timestamp, value FROM timeseries")
|
|
|
|
stuff = cursor.fetchall()
|
|
# Extract the timestamp and value columns from the query result
|
|
timestamps = [row[0] for row in stuff]
|
|
values = [row[1] for row in stuff]
|
|
|
|
# Create a line plot using the time series data
|
|
line, = ax.plot(timestamps, values)
|
|
plt.plot(timestamps, values)
|
|
|
|
# Create an animation using the update function
|
|
ani = animation.FuncAnimation(fig, Updategraph, interval=60000)
|
|
|
|
# Show the plot
|
|
plt.show()
|
|
|
|
db.close()
|
|
exit(0)
|