KVS - Distributed Key-Value Store
A minimalistic, clustered key-value database system written in Go that prioritizes availability and partition tolerance over strong consistency. KVS implements a gossip-style membership protocol with sophisticated conflict resolution for eventually consistent distributed storage.
🚀 Key Features
- Hierarchical Keys: Support for structured paths (e.g.,
/home/room/closet/socks
) - Eventual Consistency: Local operations are fast, replication happens in background
- Gossip Protocol: Decentralized node discovery and failure detection
- Sophisticated Conflict Resolution: Majority vote with oldest-node tie-breaking
- Local-First Truth: All operations work locally first, sync globally later
- Read-Only Mode: Configurable mode for reducing write load
- Gradual Bootstrapping: New nodes integrate smoothly without overwhelming cluster
- Zero Dependencies: Single binary with embedded BadgerDB storage
🏗️ Architecture
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ Node A │ │ Node B │ │ Node C │
│ (Go Service) │ │ (Go Service) │ │ (Go Service) │
│ │ │ │ │ │
│ ┌─────────────┐ │ │ ┌─────────────┐ │ │ ┌─────────────┐ │
│ │ HTTP Server │ │◄──►│ │ HTTP Server │ │◄──►│ │ HTTP Server │ │
│ │ (API) │ │ │ │ (API) │ │ │ │ (API) │ │
│ └─────────────┘ │ │ └─────────────┘ │ │ └─────────────┘ │
│ ┌─────────────┐ │ │ ┌─────────────┐ │ │ ┌─────────────┐ │
│ │ Gossip │ │◄──►│ │ Gossip │ │◄──►│ │ Gossip │ │
│ │ Protocol │ │ │ │ Protocol │ │ │ │ Protocol │ │
│ └─────────────┘ │ │ └─────────────┘ │ │ └─────────────┘ │
│ ┌─────────────┐ │ │ ┌─────────────┐ │ │ ┌─────────────┐ │
│ │ BadgerDB │ │ │ │ BadgerDB │ │ │ │ BadgerDB │ │
│ │ (Local KV) │ │ │ │ (Local KV) │ │ │ │ (Local KV) │ │
│ └─────────────┘ │ │ └─────────────┘ │ │ └─────────────┘ │
└─────────────────┘ └─────────────────┘ └─────────────────┘
▲
│
External Clients
Each node is fully autonomous and communicates with peers via HTTP REST API for both external client requests and internal cluster operations.
📦 Installation
Prerequisites
- Go 1.21 or higher
Build from Source
git clone <repository-url>
cd kvs
go mod tidy
go build -o kvs .
Quick Test
# Start standalone node
./kvs
# Test the API
curl http://localhost:8080/health
⚙️ Configuration
KVS uses YAML configuration files. On first run, a default config.yaml
is automatically generated:
node_id: "hostname" # Unique node identifier
bind_address: "127.0.0.1" # IP address to bind to
port: 8080 # HTTP port
data_dir: "./data" # Directory for BadgerDB storage
seed_nodes: [] # List of seed nodes for cluster joining
read_only: false # Enable read-only mode
log_level: "info" # Logging level (debug, info, warn, error)
gossip_interval_min: 60 # Min gossip interval (seconds)
gossip_interval_max: 120 # Max gossip interval (seconds)
sync_interval: 300 # Regular sync interval (seconds)
catchup_interval: 120 # Catch-up sync interval (seconds)
bootstrap_max_age_hours: 720 # Max age for bootstrap sync (hours)
throttle_delay_ms: 100 # Delay between sync requests (ms)
fetch_delay_ms: 50 # Delay between data fetches (ms)
Custom Configuration
# Use custom config file
./kvs /path/to/custom-config.yaml
🔌 REST API
Data Operations (/kv/
)
Store Data
PUT /kv/{path}
Content-Type: application/json
curl -X PUT http://localhost:8080/kv/users/john/profile \
-H "Content-Type: application/json" \
-d '{"name":"John Doe","age":30,"email":"john@example.com"}'
# Response
{
"uuid": "a1b2c3d4-e5f6-7890-1234-567890abcdef",
"timestamp": 1672531200000
}
Retrieve Data
GET /kv/{path}
curl http://localhost:8080/kv/users/john/profile
# Response
{
"name": "John Doe",
"age": 30,
"email": "john@example.com"
}
Delete Data
DELETE /kv/{path}
curl -X DELETE http://localhost:8080/kv/users/john/profile
# Returns: 204 No Content
Cluster Operations (/members/
)
View Cluster Members
GET /members/
curl http://localhost:8080/members/
# Response
[
{
"id": "node-alpha",
"address": "192.168.1.10:8080",
"last_seen": 1672531200000,
"joined_timestamp": 1672530000000
}
]
Join Cluster (Internal)
POST /members/join
# Used internally during bootstrap process
Health Check
GET /health
curl http://localhost:8080/health
# Response
{
"status": "ok",
"mode": "normal",
"member_count": 2,
"node_id": "node-alpha"
}
🏘️ Cluster Setup
Single Node (Standalone)
# config.yaml
node_id: "standalone"
port: 8080
seed_nodes: [] # Empty = standalone mode
Multi-Node Cluster
Node 1 (Bootstrap Node)
# node1.yaml
node_id: "node1"
port: 8081
seed_nodes: [] # First node, no seeds needed
Node 2 (Joins via Node 1)
# node2.yaml
node_id: "node2"
port: 8082
seed_nodes: ["127.0.0.1:8081"] # Points to node1
Node 3 (Joins via Node 1 & 2)
# node3.yaml
node_id: "node3"
port: 8083
seed_nodes: ["127.0.0.1:8081", "127.0.0.1:8082"] # Multiple seeds for reliability
Start the Cluster
# Terminal 1
./kvs node1.yaml
# Terminal 2 (wait a few seconds)
./kvs node2.yaml
# Terminal 3 (wait a few seconds)
./kvs node3.yaml
🔄 How It Works
Gossip Protocol
- Nodes randomly select 1-3 peers every 1-2 minutes for membership exchange
- Failed nodes are detected via timeout (5 minutes) and removed (10 minutes)
- New members are automatically discovered and added to local member lists
Data Synchronization
- Regular Sync: Every 5 minutes, nodes compare their latest 15 data items with a random peer
- Catch-up Sync: Every 2 minutes when nodes detect they're significantly behind
- Bootstrap Sync: New nodes gradually fetch historical data up to 30 days old
Conflict Resolution
When two nodes have different data for the same key with identical timestamps:
- Majority Vote: Query all healthy cluster members for their version
- Tie-Breaker: If votes are tied, the version from the oldest node (earliest
joined_timestamp
) wins - Automatic Resolution: Losing nodes automatically fetch and store the winning version
Operational Modes
- Normal: Full read/write capabilities
- Read-Only: Rejects external writes but accepts internal replication
- Syncing: Temporary mode during bootstrap, rejects external writes
🛠️ Development
Running Tests
# Basic functionality test
go build -o kvs .
./kvs &
curl http://localhost:8080/health
pkill kvs
# Cluster test with provided configs
./kvs node1.yaml &
./kvs node2.yaml &
./kvs node3.yaml &
# Test data replication
curl -X PUT http://localhost:8081/kv/test/data \
-H "Content-Type: application/json" \
-d '{"message":"hello world"}'
# Wait 30+ seconds for sync, then check other nodes
curl http://localhost:8082/kv/test/data
curl http://localhost:8083/kv/test/data
# Cleanup
pkill kvs
Conflict Resolution Testing
# Create conflicting data scenario
rm -rf data1 data2
mkdir data1 data2
go run test_conflict.go data1 data2
# Start nodes with conflicting data
./kvs node1.yaml &
./kvs node2.yaml &
# Watch logs for conflict resolution
# Both nodes will converge to same data within ~30 seconds
Project Structure
kvs/
├── main.go # Main application with all functionality
├── config.yaml # Default configuration (auto-generated)
├── test_conflict.go # Conflict resolution testing utility
├── node1.yaml # Example cluster node config
├── node2.yaml # Example cluster node config
├── node3.yaml # Example cluster node config
├── go.mod # Go module dependencies
├── go.sum # Go module checksums
└── README.md # This documentation
Key Data Structures
Stored Value Format
type StoredValue struct {
UUID string `json:"uuid"` // Unique version identifier
Timestamp int64 `json:"timestamp"` // Unix timestamp (milliseconds)
Data json.RawMessage `json:"data"` // Actual user JSON payload
}
BadgerDB Storage
- Main Key: Direct path mapping (e.g.,
users/john/profile
) - Index Key:
_ts:{timestamp}:{path}
for efficient time-based queries - Values: JSON-marshaled
StoredValue
structures
🔧 Configuration Options Explained
Setting | Description | Default | Notes |
---|---|---|---|
node_id |
Unique identifier for this node | hostname | Must be unique across cluster |
bind_address |
IP address to bind HTTP server | "127.0.0.1" | Use 0.0.0.0 for external access |
port |
HTTP port for API and cluster communication | 8080 | Must be accessible to peers |
data_dir |
Directory for BadgerDB storage | "./data" | Will be created if doesn't exist |
seed_nodes |
List of initial cluster nodes | [] | Empty = standalone mode |
read_only |
Enable read-only mode | false | Accepts replication, rejects client writes |
log_level |
Logging verbosity | "info" | debug/info/warn/error |
gossip_interval_min/max |
Gossip frequency range | 60-120 sec | Randomized interval |
sync_interval |
Regular sync frequency | 300 sec | How often to sync with peers |
catchup_interval |
Catch-up sync frequency | 120 sec | Faster sync when behind |
bootstrap_max_age_hours |
Max historical data to sync | 720 hours | 30 days default |
throttle_delay_ms |
Delay between sync requests | 100 ms | Prevents overwhelming peers |
fetch_delay_ms |
Delay between individual fetches | 50 ms | Rate limiting |
🚨 Important Notes
Consistency Model
- Eventual Consistency: Data will eventually be consistent across all nodes
- Local-First: All operations succeed locally first, then replicate
- No Transactions: Each key operation is independent
- Conflict Resolution: Automatic resolution of timestamp collisions
Network Requirements
- All nodes must be able to reach each other via HTTP
- Firewalls must allow traffic on configured ports
- IPv4 private networks supported (IPv6 not tested)
Limitations
- No authentication/authorization (planned for future releases)
- No encryption in transit (use reverse proxy for TLS)
- No cross-key transactions
- No complex queries (key-based lookups only)
- No data compression (planned for future releases)
Performance Characteristics
- Read Latency: ~1ms (local BadgerDB lookup)
- Write Latency: ~5ms (local write + timestamp indexing)
- Replication Lag: 30 seconds - 5 minutes depending on sync cycles
- Memory Usage: Minimal (BadgerDB handles caching efficiently)
- Disk Usage: Raw JSON + metadata overhead (~20-30%)
🛡️ Production Considerations
Deployment
- Use systemd or similar for process management
- Configure log rotation for JSON logs
- Set up monitoring for
/health
endpoint - Use reverse proxy (nginx/traefik) for TLS and load balancing
Monitoring
- Monitor
/health
endpoint for node status - Watch logs for conflict resolution events
- Track member count for cluster health
- Monitor disk usage in data directories
Backup Strategy
- BadgerDB supports snapshots
- Data directories can be backed up while running
- Consider backing up multiple nodes for redundancy
Scaling
- Add new nodes by configuring existing cluster members as seeds
- Remove nodes gracefully using
/members/leave
endpoint - Cluster can operate with any number of nodes (tested with 2-10)
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
🤝 Contributing
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature
) - Commit your changes (
git commit -m 'Add amazing feature'
) - Push to the branch (
git push origin feature/amazing-feature
) - Open a Pull Request
📚 Additional Resources
Built with ❤️ in Go | Powered by BadgerDB | Inspired by distributed systems theory